İKİ BOYUTLU PRİZMATİK ŞERİT KÜTLEİNİN GRAVİTE ETKİSİNİN FOURIER DÖNÜŞÜMÜ VE KENTALAN ANTIKLİNALİNE UYGULANMASI

Fourier Transform of the Gravity Effect of the 2-D Prismatic Ribbon Mass and its Application to Kentalan Anticline

Hakkı ŞENEL*

ÖZET
İki boyutlu prizmatik şerit kütleinin kuramsal gravite etkisini Fourier dönüşümü alınarak, gerek dalga sayısi ortamındaki kriterden, gerekse uzaklık ortamındaki kritik nokta bağıntısı yardımıyla prizmatik şerit kütleinin derivik parametreleri hesaplanmıştır. Bu teorik çalışmanın sonuçları, hem yapay model üzerine hem de buradaki başarısına bağlı olarak Kentalan antiklinaline uygulanarak çeşitli çizelgelerle gösterilmiştir.

İki boyutlu prizmatik şerit kütleinin gravite bağıntısının Fourier dönüşümü alnabilir. Sıfır dalga sayısındaki analitik bağıntı ile g_{max} değerine ait analitik bağıntı yardımıyla model kütleinin üst ve alt derivilleri ile prof boyuna bağlı hata değişimleri çizelgeler ile verilmiştir.

ABSTRACT
A method has been suggested to determine the depth parameters of a prismatic ribbon mass by using a sample value of Fourier amplitude at zero frequency and maximum value of the anomaly.

The method is both applied to the interpretation of synthetic gravity anomalies of model mass and measured gravity anomaly of Kentalan anticline. Error ratios of depth parameters (top and bottom) for ribbon models with various widths are estimated using gravity profiles with various lengths.

Bouguer anomaly map is obtained from the end of gravimetric observation in the South-East of Anatolia at Kentalan anticline (Siirt). The Discrete Fourier Spectra of Kentalan anticline anomaly are calculated. Equations systems are solved by the help of g_{max} value of gravity anomaly and zero wavelength value of discrete Fourier spectrum. Top and bottom depth parameters of prismatic ribbon mass are obtained by solving these two equation system. The calculated depth parameters and lithologic section derived from boreholes are close to each other indicating the success of the proposed method.

GİRİŞ
Fourier dönüşümü jeofizik-gravite araştırmalarında bugüne kadar değişik makalelerde, farklı araştırmacılar tarafından, bir çok yapay model üzerinde uygulama alanı bulunmaktadır. Bu çalışmada prizmatik şerit kütle modeliyle horst, graben ve dayak tipi jeolojik problemlere kolay ve yeni bir çözüm önerilmiştir.

* Kocaeli Üniversitesi Mühendislik Fakültesi, Jeofizik Mühendisliği Bölümü, 41300, İzmit.
İKİ BOYUTLU PRİZMATİK ŞERİT KÜTLENİN GRAVİTE ETKİSİ VE FOURIER DÖNÜŞÜMÜ

Üç boyutlu dm kütlesinin kendiysinden r kadar uzaklıkta bulunan p noktasındaki (Şekil 1) gravite potansiyeli

\[du = k_0 \Delta \sigma \frac{d \xi d \zeta}{r} \]

\[\text{(1)} \]

şeklinde verilebilir. Burada \(k_0 \) evrensel gravite sabiti, \(\sigma \) cisim ile onu örten çevre kütleye arasındaki yoğunluk farkıdır. dm elemanı kütlenin y yönünde sonsuz uzanmış durumundaki potansiyel ifadesi Telford ve diğ. (1976) (sayfa 9-11, 66-67) tarafından aşağıdaki şekilde verilmiştir.

\[du = 2k_0 \Delta \sigma \frac{1}{r} \frac{d \xi d \zeta}{1} \]

\[\text{(2)} \]

Bu ifade logaritmik potansiyel olarak bilinir. Burada

\[r = \sqrt{X^2 + Z^2} \]

olmak üzere, y yönünde sonsuz uzanlukta, \(d \xi \) ve \(d \zeta \) kütlenin çekim potansiyeli ifadesinden, çekim kuvveti bağıntısına geçilmiştir. Burada \(d \xi \) kütlenin elemaner genişliğini, \(x \) ise şeritin orta noktası yüzeyi kestği okta ile kütlenin sonsuz uzanın doğrultusuna dik doğrultudaki gözlem noktası arasındaki uzaklık olarak tanımlanmıştır (\(\xi \) ve \(x \) aynı yönde). O halde \(x \) yönündeki çekim kuvveti

\[g(x) = 2k_0 b \Delta \sigma \frac{X^2 + Z^2_0}{X^2 + Z^2_1} \]

\[\text{(3)} \]

olarak yazılabilir (Grant ve West 1965, Telford ve diğ. 1976).

\[g(w) = 4\pi k_0 b \Delta \sigma \frac{|w|}{|w|} \]

\[\text{(4)} \]

Gravite değerleri uzunluk boyutunda değişim gösterdiğinden frekans karşılığı olarak dağlı boyu kullanılabilir.
Prizmatik Şerit

\[
\Delta g_{mgal}
\]

\[
\begin{align*}
Z_0 &= 300 \text{ m.} \\
Z_1 &= 100 \text{ m.} \\
2b &= 200 \text{ m.} \\
\Delta \varrho &= 1 \text{ gr/cm}^3
\end{align*}
\]

Şekil 2. Model kütle ve gravite anomalisi.

Fig. 2. Model mass and its calculated gravity effect.

\[
w = 2 \pi k = \frac{2\pi}{\lambda}
\]

Burada \(w \) dalga sayısı, \(\lambda \) profil uzunluğudur.

\[
k \to 0 \text{ iken } g(k)\text{'nin limiti için}
\]

\[
g (k) = 4\pi k_0 b \Delta \sigma \frac{1}{2\pi |k|} \left(e^{-2\pi |k| Z_1} - e^{-2\pi |k| Z_0} \right)
\]

(5)

yazılabilir. Bu bağntıyı lHospital kuralını uygulayarak ve \(k=0 \) için değerini yazarak

\[
g (0) = 4\pi k_0 b \Delta \sigma (Z_0 - Z_1)
\]

(6)

elde edilebilir. (3) nolu bağntidan \(g_{\text{max}} \) için

\[
g (x_0) = 2k_0 b \Delta \sigma \frac{1}{2\pi |k|} \frac{Z_0^2}{Z_1^2}
\]

(7)

ve

\[
g (x_0) = 4k_0 b \Delta \sigma \frac{1}{2\pi |k|} \frac{Z_0}{Z_1}
\]

(8)

buradan da

\[
g (x_0) = \frac{Z_0^2}{4k_0 b \Delta \sigma Z_1^2}
\]

(9)

bağntısı elde edilir (6) ve (9) nolu denklemler ile iki bってしまった prizmatik şerit külenin taban ve tavan derinlikleri saptanabilir.

MODEL ÇALIŞMASı VE SONUÇLARı

Model kütlenin (Şekil 2) gravite etkisi hesaplanırak, anomalinin karakterini ortaya koyacak kadar uzunlukta, değişik türde pencereleme anomalisi elde edilmişdir. Bu anomalilerin Ayrık Fourier Dönüşümü alınarak, yapıının dalga sayısı ortamındaki genlik spektrumu elde edilmişdir (Şekil 3).

Bu model çalışmasına göre elde edilen sonuçlarda pencereleme etkisi Çizelge 1 de görülmektedir. Profil uzunlukları değişşimlerine göre değişik şerit genişlikli modellerdeki hatalar indelenmiştir (Çizelge 2a,b,c,d).

Bu çalışmada kullanılan kritik değerlerden, spekttrumda kullanılan değer, spektrumun tümünde olmayıp yal-

Fig. 3. Fourier amplitude spectra of the model mass.

Çizelge 1. (Şekil: 3)’teki gravite anomalisine uygulanan çeşitli pencelerin oluşturduğu hataların değişimi.

Table 1. The variation in errors computed by using various windows applied to the gravity anomaly in Fig. 3.

<table>
<thead>
<tr>
<th>Pencere çeşidi</th>
<th>Gerçek derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Gerçek üst derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Z₀/Z₀</th>
<th>Z₁/Z₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectang.</td>
<td>300.0</td>
<td>280.0</td>
<td>100.0</td>
<td>93.0</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Hamming</td>
<td>300.0</td>
<td>254.0</td>
<td>100.0</td>
<td>84.0</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Blackman (-58dB)</td>
<td>300.0</td>
<td>241.5</td>
<td>100.0</td>
<td>80.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Blackman +Harris (-92dB)</td>
<td>300.0</td>
<td>234.3</td>
<td>100.0</td>
<td>78.1</td>
<td>21.9</td>
<td>21.9</td>
</tr>
</tbody>
</table>

n兹 sıfır dalga sayısındaki değer olduğundan Fourier integrali göz önüne alınırsa

\[g(0) = \sum_{k=1}^{N} g(k, \Delta x) \Delta x \]

\[g\left(x \right) = \int_{-\infty}^{\infty} g(x) e^{ix} dx \]

\[g\left(0 \right) = \int_{-\infty}^{\infty} g(x) dx \]

ayrık halde yazarsak

olacaktır. Burada dalga sayısı sıfır almış olduğundan, Fourier integrali bir anlamda gravite eğrisi altındaki alanın denk olacaktır. Bu nedenle profil boyunca gravite sinyaline desibel gücü yüksek penceler uygulayarak, bir anlamda gravite sinyalını pencereleyerek bozmak anlamında olacak olduğundan gerekşizdir. Aksi takdirde Çizelge 1’deki gibi pencere uygulayarak, spektral ortamda oluşan ilk harmonik genişlemesi ve sıfır dalga sayısındaki genlik kaybından dolayı hatalar ortaya çıkacak ve parametre saptanmasında
Çizelge 2a. Profil uzunluğuna bağlı hatalar (profil uzunluğu 1.0 Km)

<table>
<thead>
<tr>
<th>Pencere çeşitı</th>
<th>Gerçek derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Gerçek üst derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>(\frac{Z_0'Z_0}{Z_0})</th>
<th>(\frac{Z_1'Z_1}{Z_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>300.0</td>
<td>228.6</td>
<td>100.0</td>
<td>76.2</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>100.0</td>
<td>300.0</td>
<td>228.6</td>
<td>100.0</td>
<td>76.2</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>200.0</td>
<td>300.0</td>
<td>228.9</td>
<td>100.0</td>
<td>76.3</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>400.0</td>
<td>300.0</td>
<td>228.9</td>
<td>100.0</td>
<td>76.3</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>600.0</td>
<td>300.0</td>
<td>228.9</td>
<td>100.0</td>
<td>76.3</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Çizelge 2b. Profil uzunluğuna bağlı hatalar (profil uzunluğu 2.0 Km)

<table>
<thead>
<tr>
<th>Pencere çeşitı</th>
<th>Gerçek derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Gerçek üst derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>(\frac{Z_0'Z_0}{Z_0})</th>
<th>(\frac{Z_1'Z_1}{Z_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>300.0</td>
<td>262.6</td>
<td>100.0</td>
<td>87.5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>100.0</td>
<td>300.0</td>
<td>262.6</td>
<td>100.0</td>
<td>87.5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>200.0</td>
<td>300.0</td>
<td>262.9</td>
<td>100.0</td>
<td>87.6</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>400.0</td>
<td>300.0</td>
<td>262.9</td>
<td>100.0</td>
<td>87.6</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>600.0</td>
<td>300.0</td>
<td>262.3</td>
<td>100.0</td>
<td>87.4</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Çizelge 2c. Profil uzunluğuna bağlı hatalar (profil uzunluğu 4.0 Km)

<table>
<thead>
<tr>
<th>Pencere çeşitı</th>
<th>Gerçek derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Gerçek üst derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>(\frac{Z_0'Z_0}{Z_0})</th>
<th>(\frac{Z_1'Z_1}{Z_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>300.0</td>
<td>281.2</td>
<td>100.0</td>
<td>93.7</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>100.0</td>
<td>300.0</td>
<td>281.2</td>
<td>100.0</td>
<td>93.7</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>200.0</td>
<td>300.0</td>
<td>280.8</td>
<td>100.0</td>
<td>93.6</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>400.0</td>
<td>300.0</td>
<td>280.8</td>
<td>100.0</td>
<td>93.6</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>600.0</td>
<td>300.0</td>
<td>280.8</td>
<td>100.0</td>
<td>93.6</td>
<td>6.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Çizelge 2d. Profil uzunluğuna bağlı hatalar (profil uzunluğu 8.0 Km)

<table>
<thead>
<tr>
<th>Pencere çeşitı</th>
<th>Gerçek derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>Gerçek üst derinlik (m)</th>
<th>Hesaplanan derinlik (m)</th>
<th>(\frac{Z_0'Z_0}{Z_0})</th>
<th>(\frac{Z_1'Z_1}{Z_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>300.0</td>
<td>290.5</td>
<td>100.0</td>
<td>96.8</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>100.0</td>
<td>300.0</td>
<td>290.5</td>
<td>100.0</td>
<td>96.8</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>200.0</td>
<td>300.0</td>
<td>289.8</td>
<td>100.0</td>
<td>96.6</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>400.0</td>
<td>300.0</td>
<td>290.6</td>
<td>100.0</td>
<td>96.9</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>600.0</td>
<td>300.0</td>
<td>290.4</td>
<td>100.0</td>
<td>96.8</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Fig. 4. Gravity anomaly of the Kentalan anticline.

Şekil 5. Saha verisinin Fourier genlik spektrumu.

Fig. 5. The Fourier amplitude spectra of the field data.
Prizmatik Şerit

<table>
<thead>
<tr>
<th>Age</th>
<th>Form</th>
<th>M'tre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosen</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Paleosen</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Ust Geomav</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Alt Geomav</td>
<td></td>
<td>1308</td>
</tr>
<tr>
<td>Karzan</td>
<td></td>
<td>1455</td>
</tr>
<tr>
<td>Gavran</td>
<td></td>
<td>1500</td>
</tr>
</tbody>
</table>

Fig. 6. The lithologic section obtained from the West-Kentalan-1 borehole.

yanılglara neden olacaktır. Ayrıca Fourier integrali sınırlarından analaşılaçağ üzere gravite profilı yeterli uzunlukta olmalıdır. Bunu Çizelge 2a,b,c,d'den açıkça görmek mümkündür.

Bu çalışmada kullanılan kritik g_{max} değerini veren bağıntı şerit genişliğinin çok dar olması halinde geçerlidir. Oysa bu kritik değerle, spektral ortamındaki kritik değer kullanılarak bulunan derinlik parametreleri, Çizelge 2a,b,c,d'de görüleceği üzere, şerit genişliğinin artması ile bir hata değişimini oluşturamaktadır. Burada şerit genişliğine bağlı beklenen hata artımı spektral ortamındaki $g(0)$ kritik değerinin karakterinden yok olmaktadır. Bu nedenle değişik genişlikteki horst, graben veya dayk tipi yapılarla bu çalışma, profil boyuna, yani gravite anomalisinin karakterini ortaya koyacak kadar uzunlukta olması dikkat ederek başarıyla uygulanabilir.

SAHA ÇALIŞMASI VE YORUMU

Kentalan antiklinikine (Sirt) ait gravit anomalisi'nden (Şekil 4) Ayrık Fourier Dönüşümü ile dalga sayısı ortamındaki genlik spektrumu hesaplanmıştır (Şekil 5). Gravite anomalisinin g_{max} değeri ile dalga sayısı ortamındaki spektrumun sıfır dalga sayısı değeri kullanılarak elde edilen iki denklem sistemi yardımıyla, anomalie neden olan bozucu prizmatik kütlenin üst ve alt derinlik parametreleri aşağıdaki gibi elde edilmştir ($g_{max} = 14.4$ mgal, $g(0) = 334$ cp data interval, gözlem aralığı $dx = 250$ metre, $Z_i = 1380$ metre, $Z_o = 2270$ metre). Elde edilen bu sonuçlarla, sahanın litolojik kesiti kıyaslardığında yönemin başarısı açıkça görülmektedir (Şekil 6). Bu çalışma horst, graben ve düşey dayk model yapılıarı içinde başarıyla uygulanabilir. Diğer iki boyutlu yapıdaki çalışmalar ise yakınak model olarak ya da yinelemeli yöntemlerde başlangıç modeli olarak emniyetle kullanılabilir.

KAYNAKLAR

Bhattacharyya, B.K., Leu Lei-Kuang 1977, Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies, Geophysics 42, 41-50.

